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Abstract—This paper. which is the first in a two-part study. addresses certain issues concerning the
small-strain theory of nonlinear elasticity. It considers isotropic materials which possess a lincar
response in shear and a nonlinear response in dilatation. and (1) establishes an explicit necessary
and sufficient condition for the existence of piccewise homogencous deformations, (i) obtains a
characterization of the set of all such deformations. (iif) derives an expression for the “driving
traction”™ on a surface of strain discontinuity, (iv) discusses the notion of i kinetic law, and tinally
(v) makes some remarks on (a) the driving force on a crack-tip, (b) the uncoupling of the shear and
dilatational invanants in the strain encrgy function, and (¢) the intersection of a surtace of strain
discontinuity with a traction-free surface. While the analysis is carried out within a three-dimensional
setting, the results are shown to have a particularly simple form when expressed in terms of a certain
constitutive function E(xe). In Part 11 of this study we examine a specilic boundary-value problem.

1. INTRODUCTION

In this paper, which is the first in a two-part study, we show that certain features of the
finite theory of clasticity are also present in the small-strain nonlincar theory ; the particular
class of constitutive laws that we consider here is one that has been used to model the
mechanical response of ceramic composites undergoing supereritical phase transtormations.
In Part I we will examine a specific boundary-value problem,

A number of recent studies in finite deformation clasticity theory have been concerned
with "nonelliptic materials”™, see for example Abeyaratne (1980, 1983), Ericksen (1975),
Gurtin (1983), Hutchinson and Neale (1982), James (1984, 1986), Knowles (1979). Knowles
and Sternberg (1978) and Silling (1987). Such muaterials are capable of sustaining defor-
mations whose gradient is discontinuous across certain surfuces in the body ; this leads to
a tremendous lack of uniqueness of solution to boundary-value problems, since the cliass
of functions from among which a solution is sought has to be greatly enlarged to allow for
such deformations. Moreover, quasi-static motions of a body composed of such a nominally
clastic material can tnvolve a dissipation of mechanical energy at particles located on a
moving surfiuce of discontinuity (Knowles, 1979).

Continuum mechanical treatments of stress-induced phase transformations in solids
involve such deformations (e.g. Jumes, 1984, 1986). In the context of phase transformations,
a surfuce of displacement gradient discontinuity corresponds to a phase boundary separating
two ditferent phases of the material, and the aforementioned non-uniqueness might be
thought of as arising due to the fact that the classical equations of the continuum theory
do not account for the kinetics of the transformation,

In the present study we examine the corresponding issues within the infinitesimal
strain theory of nonlincar clasticity. We show that the aforementioned phenomena (of
discontinuous, dissipative, non-unique deformations) persist in the infinitesimal strain
theory too, suggesting that (in some sense) it is the constitutive nonlincarity rather than
the kinematical one that is the principal source of these features.

In this study we restrict attention to the particular class of constitutive laws that
were proposed by Budiansky, Hutchinson and Lambropoulos (1983) for modcling the
mechanical response of certain transforming ceramics. The fracture toughness of these

t The results reported here were obtained in the course of an investigation supported in part by the U.S. Office
of Naval Research.
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ceramic composites (which contain second phase particles that undergo a phase trans-
formation) was known to be higher than that of the brittle ceramic matrix (Garvie er af.,
1975: Evans and Cannon, 1986 McMeeking and Evans. 1982). In order to model this
phenomenon at the continuum level, Budiansky er af. (1983) derived a4 homogenized
constitutive law for such composites using arguments based on the self-consistent method.
They argued that since the transformation leads to particles twinned into layers of alter-
nating shear. the average shear associated with the transformation. from a continuum point
of view. is essentially zero. Accordingly. they proposed (and studied) a constitutive law
with a linear response in shear and a tri-linear response in dilatation ; see also Silling (1987).
It is this class of materials that we will study here (modified to allow the dilatational
response to be arbitrary).

Chen and Reyes Moral (1986) have experimentally examined the relative importance
of shear and dilatation in transforming ceramics, and Lambropoulos (1986) has proposed
a more general constitutive law that accounts for both of these effects. We do not consider
such generalizations here.

In this paper, we first recall the ellipticity conditions for the three-dimensional dis-
placement equations of equilibrium ; they are shown to have a particularly simple interpret-
ation in terms of the stress response function of the material in uni-axial deformation, Z(x).
Next, in Section 3, we examine conditions under which a three-dimensional piccewise
homogencous deformation can be sustained by the material, and derive a single necessary
and sufficient condition for the existence of piccewise homogencous deformations. This
condition too is expressed ina particularly simple form in terms of Z(¢) ¢ in addition to
providing information on existence, it also allows us to characterize the set of aff possible
piccewise homogencous equilibrium states.

As show by Knowles (1979), when the theory of finite clasticity is broadened to allow
for equilibrium ficlds with discontinuous displacement gradients, the usual balance between
the rate of external work and the rute of storage of clastic energy during o quasi-static
motion no tonger holds. Instead, once finds that mechanical energy may be dissipated at
points on the surfaces of discontinuity. This in turns permits one to introduce the notton
of a “driving traction” which may be viewed as a4 normal traction that the body applies to
the surface of discontinuity at cach of its points, In Scction 4 we observe that a disssipation
of mechanical energy can also occur in the small-strain theory of elasticity, and we derive
an explicit expression for the driving traction in the case of the aforementioned materials;
this too may be simply expressed in terms of ().

The stress response function in uni-axial deformation X(x) plays such a visible role in
all of these results becuuse (as shown in Section 3) the local deformations on the two sides
of a surfuce of discontinuity ditfer from cach other by precisely a uni-axial stretch in the
direction normal to that surface,

In Section S we bricfly discuss the need for additional constitutive information in order
to complete the theory. As discussd there, this might, for example, take the form of u
“kinetic law™ which relates the driving traction on the surfuce of discontinuity to its velocity
of propagation. The “flow rule’™ utilized by Budiansky ¢r «f. (1983) is equivalent to a
particular kinctic law as will be discussed more fully in Part 1.

The results in this paper pertaining to the existence of piccewise homogencous defor-
mations (in three dimensions) have a similar form to analogous results for isotropic,
incompressible clastic materials undergoing tinite plune deformations {Abeyaratne and
Knowles, 1989). Likewise, the (three-dimensional) driving traction formula here is similar
to the corresponding formulae for finite plune and anti-plane deformations (Abeyaratne
and Knowles, 1989 ; Yatomi and Nishimura, 1983). A discussion of kinctic relations in the
particular sctting of the one-dimensional theory of bars was given in Abeyaratne and
Knowles (1989).

Finally we make some closing remarks in Scction 6. In Section 6.1 we observe that the
driving force on the tip of a crack is generally affected by the presence of a surface of strain
discontinuity, cren if the crack is stationary ; see Budiansky er af. (1983). A relationship
between the far ficld value of the J-integral. the near-tip value of J and the resultant driving
force on the surfice of discontinuity is derived. The possibility of sustaining anti-plane
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shear deformations is discussed in Section 6.2 and is connected to the coupling of the shear
and dilatational terms in the strain energy function. In Section 6.3 we show that when a
surface of strain discontinuity intersects a traction-free surface, it must do so tangentially
(unless the strength of the discontinuity vanishes at that point).

2. PRELIMINARIES

Consider an elastic body occuping a region R of three-dimensional space. Let x be the
position vector of a particle in R and let u(x) be its displacement. Suppose that there is a
smooth surface S which lies in R, such that the displacement field is continuous on R and
twice continuously differentiable on R —§; Vu may suffer a finite jump discontinuity across
S. Let H. ¢ and e denote the displacement gradient tensor, the infinitesimal strain tensor
and the strain deviator respectively :

Hii = ll,_,'
1/2(u;;+u,,)p for xeR-S. H

€, = &;— l/’3£kk(s:;'

&i;

Displacement continuity across S requires
[fe. J17, =0 for xe§ (2)

for all vectors /7 that are tangential to § at x; [[*]] indicates the jump across the surface §S.
Finally, let A(x) and k(x) denote the respective strain invariants which represent the
dilatation and shear at a particle x:

A=tre
aiiat forxeR-S. 3
k=2t (eH"? )
Next, let a(x) be the stress tensor ficld on R and suppose that ¢(x) is continuously
differentiable on R—§; ¢ may sufler a finite jump discontinuity across S. Equilibrium in
the absence of body forces requires

Gii‘izot G, =0 forxeR-S {4)
[[G:/”"/ ={ fOl' xeS (5)

where n is 2 unit normal vector on S. A surface S which carries jump discontinuities in g
and e while maintaining displacement and traction continuity is called an equilibrium shock
or phase boundury.

Turning to the constitutive law of the material at hand, suppose that it is homogeneous,
isotropic and hyperelastic. The elastic potential W then depends on the deformation only
through the three principal invariants of strain. A particular casc of special interest is that
in which W depends only on the shear and dilatational invariants k and A

W(e) = W(k.A). (6)

The stress-strain relation ¢ = d/de at a particle x € R — § then specializes to
0, = (/) eWick e, + (CW[OA - (2A/3k)IW]CK) §,,. N
If the material is such that the mean stress ¢,,/3 depends on the deformation only through

the dilatation g, one can show using (7) that it is necessary and sufficient that (6) have the
separable form W(k,A) = f(k) +g(A) which can be more conveniently written as
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k A
Wik.A) = j (k) dx-f-f 6(3)ds forkz20, —x<A<x=; {0)=4d0=0. (8)

} )

(Alternatively, one show that the components of deviatoric stress depend on the deformation
solely through the components of deviatoric strain if and only if ¥ has the form (8).) The
constitutive functions 7(k) and ¢(A) may be readily interpreted as follows: in a simple shear
deformation «; = kx.. u> = 0. u, = 0, the shear stress component o, is found from (8). (7)
tobe g, = f(k):ina pure dilatational deformation u, = (A/3)x.. one finds thatg,/3 = d(A).
Thus. the function 7(k) is the shear stress response function of the material in simple shear,
while the function 6(A) is the mean stress response function of the material in pure dilatation.

Finally, we further specialize (8) to the case in which the shear stress response in simple
shear is linear: ©(k) = pk. This is motivated by the fact that such constitutive relations
appear to be of interest in the continuum mechanical modeling of certain ceramic composites
containing particles which undergo stress induced phase transformations (see Budiansky ¢t
al.. 1983 ; Evans and Cannon, 1986). Thus, in this study we consider materials characterized
by an elastic potential

3

Hik.A)Y = (u 2)/\"‘+J da(&)dé fork =20, —oc <A< )

0

where g (> 0) 1s the infinitesimal shear modulus of the material. The stress-strain relation
(7) now speciilizes to

a, = 2us,, +(3(A) = 2uA;3)0,,. (10)
The bulk modulus of the material (9) is
B(A) = d(A)/A tor — o <A < w. n

It 1s uselul for later purposes to consider the response of this body in a uni-axial
deformation w, = exy, 4, = 1, = 0. From (10) one gets g, = X(¢) where

(e) = d(e)+4ue/3 for —L << o (12)
Z() is the stress response function of the material in uni-axial deformation.
The displacement equations of equilibrium for the class of materials under discussion

here are, by (10), (4), (1), (3)

coul®y ;=0 forxeR-S§ (13)
where

L'I[l\‘/(c) = .l‘(‘jlk ‘SI/ + 61( ,15[‘) + (&,(A) - 2"/13)‘511(5A/' ( 14)

The system of partial differential equations (13) is satd to be (strongly) elliptic at a solution
vand at a point xe R—Sif

¢ (e gy > 0 (15)

for all unit vectors mand n. It is not difficult to show from (14), (15) and & > 0 that (strong)
cllipticity prevails if and only if

d (A(X)) > —4u/3 (16)
where A(X) = £,(x) is the dilatation associated with the given deformation at the point

under consideration. Observe from (12) that this ellipticity condition can be expressed
simply in terms of the stress response function in uni-axial deformations as
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Z(A(x) > 0. (7

Thus the ellipticity of the governing equations is directly related to the invertibility of the
stress response function in uni-axial deformations. If Z fails to be monotonically increasing
on —x < ¢ < x, ellipticity will be lost at some deformation. If £'(e) > 0 for all &. we say
that the material is elliptic. We assume throughout that Z'(0) > 0 so that ellipticity prevails
at the undeformed state; since £°(0) = x+44°3 where « is the infinitesimal bulk modulus.
this. together with g > 0, are the usual ellipticity conditions of linear elasticity.

3. PIECEWISE HOMOGENEOUS DISPLACEMENT FIELDS

Not all homogeneous, isotropic elastic materials characterized by the constitutive
relation (10) can sustain deformations with discontinuous strains. In this section, we
determine a simple necessary and sufficient condition on the material which determines
whether or not it can sustain piecewise homogeneous deformations of this type. In addition,
for materials that can sustain such deformations, we obtain a characterization (in a certain
sense) of the entire collection of possible piecewise homogeneous deformations.

We now consider the special case in which R coincides with all of (x,.x,. x3)-space, §
is a plane through the origin, and the displacement gradient is constant on each side of §.
Let n be a unit vector normal to the plane S, and let ;{ R be the two open half-spaces into
which § divides R with the normal n pointing into R. The ficld equations (13) will then be
trivially satistied in R~ §, and all that remains to be fulfilled are the jump conditions (2)
and (3).

Consider the piccewise homogencous displacement ficld

fix for xeR
u= (18)
Hx for xe R

. . A . .
where the displacement gradient tensors H and H are constant and distinet :

i # H. (19)

Define £, 2, A and A by
= VJ2H,+H,). & =1/2(H, +H,) (20)
A=ty A= i Q@

The displacement field (18) will be continuous across S il and only if
il,,l, = H, ¢, for all unit vectors Z normal to n (22)
while by (5). (10) the tractions will be continuous across S if and only if
2k, n, + (G(A) = 2uB 3, = 2uz, n, + (G(A) = 2ud/3)n,. (23)

Given a tensor H. the shock problem consists of finding a tensor H and a unit vector n such
that (22) and (23) (with (20), (21)). hold.

We first establish a necessary condition Wthh must hold if the shock problem is to
have a solution. To this end, suppose that given H there is a tensor H and a unit vector n
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such that (20)-(23) hold. It can be readily shown that (22) holds if and only if there exists
a vector a such that

H,=H,+an. (24)

Thus (20), (21). (24) yield
€, = &,+ 1 2an,+an). (25)
A= Z-Hl,n,. (26)

Turning next to the requirement (23) and multiplying it by the components /7, of any unit
vector normal to n gives

(27)
which in view of (25) simplifies to

al, = 0. (28)
Since this must hold for all unit vectors £ in the plane 8, it follows that a ts parallcl ton:

a=an, (29)

By (29). (26),

1=A-A. (30

Morcover (25) can be written, in view of (29), as

¥
£, = L, +ann, 3n

Finally, multiply the traction continuity condition (23) by #, and usc (31), (30) to obtain

G(A) +4uA/3 = G(A) +4uA,3 (32)

which, in terms of the uni-axial deformation response function Z(A), reads

T(A) = Z(A). (33)

Next we will show that if the (necessary) condition (33) holds, then this in fact
guarantees the existence of a solution to the shock problem. In order to show this, suppose
that H is a given tensor. Define A by (21),, (20),. If there exists a number A (# A) such
that (33) holds, then (for cach arbitrary unit vector n) we can define 2 by (30), a by (29)
and H by (24). It may be readily verified that these tensors Hand H automatically satisfy
the requirements (22), (23) of displacement and traction continuity across the plane with
unit normal n. Thus we have the following result :

Proposition. Given a tensor ﬁ there exists an associated piecewise ‘homggeneous
equilibrium shock if and only if there is a number A (# A = Hy,) such
that (33) holds.
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When the constitutive law is such that the stress response function Z(¢) ts monotonically
increasing (in which case the material 1s elliptic) we see from the preceding proposition that
the matenial cannot sustain a piecewise homogeneous deformation. On the other hand. if
the matenial is such that £'(A) < 0 on some interval. then since £°(0) > 0. it follows that
piecewise homogeneous detormations will exist for suitably chosen values of H.

In addition to providing information concerning the existence of a piecewise homo-
geneous deformation associated with the given displacement gradient H. the preceding
result also permits us to characterize the set of all such deformations which can be associated
with that H: it states that for every number A for which (33) holds. and for all choices of
the unit normal vector n. one can construct an acceptable H. Let = denote the following
set in the (A. A)-plane:

== (A.A) | Z(A) = £(A).A £ A). (34

According to the preceding proposition, given a displacement gradient tensor lfl the associ-
ated shock problem has a solution if and only if there is a number A such that (A.A)EE
where A = H, : morcover. all tensors H that can be connected to H by a shock are generated
by all numbers A for which (A.A)GE. The set = characterizes the collection of all possible
shocks. A sketch of the curve = in the (A,A)mlunc, corresponding to a particular class of
materials, will be given in Section §.

Finally, we note that according to {24), (29), (30) the displacement gradient tensors
11 and H are related by

H, =11, +(A-Amn, (35)

this implies that the deformation on R is equivalent to the deformation on R together with
a uni-axial stretch in the direction normal to the shock surface. This is presumably the
reason why the stress response function in uni-axial deformation X(x) plays such a central
role in the preceding (and subsequent) results,

4. DRIVING TRACTION

We now consider a quasi-static motion of the body and let u(*,1). t, < 1t < 1, be a one-
parameter family of solutions of the displacement equations of equilibrium (13) of the type
deseribed in Section 2. Let S, « R be the family of shocks associated with this motion, and
assume that the particle velocity v(x. ) = Cu(x, 1)/¢1 exists and is continuous in (x, 1) for
X€ R—S8,. 1, € ¢t < 1), and that v is piccewise continuous on R x {1, 1,].

Let d(v) denote the difference between the rate of external work (on any fixed regular
region T1 < R) and the rate at which clastic energy is being stored (in 1) :

{
d(1) = J\ o, dd — ¢ .[ Wie)dl, 1, <11y, (36)
A4 dt

d(1) is the rate of dissipation of mechanical energy in the region I1. By adapting to the
present small-strain theory the analysis given by Knowles (1983), one can show that d(1)
may be written as
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d() = J fn-Vdd (37)
s, -n

where f{x. 1) is defined by
=[P} n-n, for xe§. (<1<, (38)
P(x.¢) is the energy-momentum tensor
P,=WE9d,—a, ,H, for xeR-S§, 1,£r<1, 39

and V(x. 1) is the velocity of a point on the moving surface S,. If the motion happens to be
smoath, P(-. 1) will be continuous across S, and so (37). (38) gives d(t) =0 fort, <t < 1.
In general however the dissipation rate d(¢) # 0 whenever [1 intersects S,.

Combining (36) with (37) yields

d
J on-vdd +J (—fa)*Vdd = —f Wy dy, , <1<, (40)
Rt S dr Jn

which may be viewed as a work-energy identity. It states that the sum of the rates at which
work is being done on T1 by the external forces and the phase boundary S, balances the
rate at which energy is being stored in IT. Accordingly, — fn may be thought of as the
truction applicd by the surface S, on the body, or equivalently, + fn can be viewed as a
“driving traction” exerted on the phase boundary S, by the surrounding material ; the scalar
S determines the magnitude of this traction. The expression (38) (with (39)) is a special
case of u formula given by Eshelby (1970) ; sce also Eshelby (1956), Rice (1975).

It we postulate that at cach instant, the rate of storage of energy in IT cannot exceed
the rate of external work on [, then we must require the dissipation rate d(r) to be non-
negative for all sub-regrons 11 and all instants ¢. Thus, by (37),

S, =20 ftor xeS8, 1,11, (41)
where 1, is the normat velocity of a point on the surfuce S, :

F,=V-n for xe8, <1<, (42)
Alternatively, the dissipation inequality (41) can be shown to be a consequence of the second
law of thermodynamics under isothermal conditions ; see Knowles (1979). In general, given
an equilibrium state, the inequality (41) restricts the direction in which the surface S, may
move in a quasi-static motion commencing from this state.

A particularly simple expression for the driving traction can be derived in the case of

materials characterized by the special clastic potential (9). First, from (24), (29) once has

([H.]]F = —ann,. (43)

Next. in view of (10), (12), (43) and the continuity of traction,

oy, lnn)} = —1,‘2;1{:,,/1,'1,—2;1A+Z(A)}. (44)

However from (3), (1) and (31) onc obtains
(K] = — i, nm, —2%° +2x(A+ A)/3 (45)

. . . + .
which can be used to climinate the term &, nn, from (44) to give
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o Hunnllt = p(k = k24248 - A3~ oz d). (46)

Finally. since (9) and (12) provide
, A
W) = #k‘/Z—Z#AZ/3+J (%) d¢, 7
0

eqns (38). (39). (46), (47) and (30) yield the desired expression

A
f=J $(A) dA-Z(A)(A—A) for xeS. t, <<t (48)

A

for the driving traction. In the finite theory, formulae of this general form have been derived
in the special case of “normal shocks” in plane and anti-plane finite deformations of
isotropic, incompressible elastic solids (Abeyaratne and Knowles, 1989 ; Yatomi and Nish-
imura, 1983).

It 1s useful to write (48) as

f=FAA) for xeS, t,<t<t, (49)

where F is the function defined on the set = by

+

A
FA,A) = '[ 3(8) dA—TA)(A-A) for (A A)e=. (50)
A

By (49), the driving traction f at a point on the phase boundary S, depends only on the
local dilatations 13 A on the two sides of S,; J does not depend on the amounts of shear k,
k. nor on the orientation of S,. Moreover, in view of (50) and (33), the value of f may be
interpreted geometrically as the difference between the area under the uni-axial deformation
stress-strain curve between A and Z, and the area of the rectangle on the same base with
height Z(A).

5. KINETIC LAW. AN EXAMPLE

In Part I (Abeyaratne and Jiang, 1989) we will present an example which shows that
boundary-value problems formulated in the conventional manner, for materials char-
acterized by (9). may suffer from a tremendous lack of uniqueness. This is known to be the
case in the finite theory as well (e.g. Abeyaratne, 1980; Abeyaratne and Knowles, 1989).
This non-uniqueness suggests that the theory, as formulated, is deficient, and that it ought
to be supplemented with additional constitutive information. One way in which to
implement this is to postulate a constitutive relation, or “kinetic law™, which applies to
particles on S,, and relates the driving traction f to the normal velocity of propagation V,
of the phase boundary.

In order to formalize this, let f, and f,, be the supremum and infemum of the function
F(& A) on the set Z. Then, one might suppose that there is a constitutive function V()
defined on [ f.., fy] such that

V.=V(f) on S, t,<t<1,. (51

In order to conform to the dissipativity inequality (42), ¥ must be such that
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Fig. 1. Stress response curve in pure dilatation.

SV(N =20 for felf, ful (52)

The form (51) is, of course, merely an example of a class of kinetic laws that might be
imposed ; it could be generalized to include dependence on other local variables as well so
that, for example, a kinetic law might read ¥, = V(A, A), where the constitutive function
V is defined on E,

In order to illustrate this (and some of the preceding results) we now choose the
dilatational stress response function in the constitutive law (10) to be as follows

A for0 <A <A,
6(8) = \pA+0(A—-Ay)/(An—Ay) for Ay <A<A, (53)
BA+o; forA>A,;

f. A,.. Ay and o, are material constant such that

>0, A,>Ay>0, 6,<0
A, +a6r>0 (54)
(An —84)(B+4u/3) < —0o7.

The second condition in (54) implies that 6(A,,) > 0, while (54); ensures that the system of
equations (13) is non-elliptic when A,, < A(x) < A,,. In this example we will confine atten-
tion to the range A > 0 and consequently we have left 6(A) undefined for negative values
of its argument. The specific constitutive law (53), (54) is the one considered by Budiansky,
et al. (1983) in the case of supcr-critfcal transformations. As shown in Fig. 1, as the
dilatation increases, the mean stress first rises linearly to a maximum value a,, = fA,,, it
then declines linearly to the value o,, = fA,+ 0, and finally rises again with the initial
slope 8.

The response function of this material in uni-axial deformations is given by (53), (12)
as
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Fig. 2. The set = characterizing all possible shock states.

2 for0<e<g< Ay
Z(e) = ae+ar(e—Ay)/(A,—Ay) forA, <e<A, (55)
ac+or fore= A,
where we have set
o= fi+4u/3. (56)

Finally, we introduce the following additional notation which pertains to certain special
points on the stress-strain curve shown in Fig. | :

Aml = Am +UI‘/a‘ AM} = AM —a'l'/a } 57
B = A+ B)24+0,/20, By = (Bt Bu)2—0 /22, C7
Note that the straight lines which join (Ay.04) to (Ayi d(Ay;s). (A, 6(A,)) to
(A,3.6(A,3). and (A,,1,6(4A,,)) to (A,.. 6,,), each have the same slope, —4y/3 ; see (32) for
the significance of this. Moreover, A, and A,; are seen to obey the conditions

Z(A‘”) = Z(Aa}) = (Zm+z,\l)/2}
(58)

where ., =X(4,), Zy=Z2(A).

The set = for this material, which characterizes the complete set of possible shocks in
the (A, A)-plane, may be readily found from (34), (55). It consists of the points on the polygon
ABCDEFA shown in Fig. 2, except for the vertices A and D which lie on the line A=A

We turn next to equation (50) which defines the driving traction function F on this
set E. Explicit formulae for F may be readily derived from (50), (55). For example,
when (A. A)€ EF, one finds

FA.A) = (—ar/0)xA = (T, + )2} (59)

We do not display the remaining formulae here. [t is particularly useful to know the sign
of the driving traction, since then the direction of propagation of the phase boundary is
known through the dissipativity inequality (41). The sign of F may be read off from (59)
(and the analogous formulae appropriate to the other points on Z); one finds that
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Fig. 3. Kinctic response function.

>0 for (A, A)e (AB]+[BP)+ (DE]+[EQ),
FAA.A)={ <0 for (A,A)e(PC]+[CD)+ (QF]+[FA), (60)
=0 for (/S./S) =PorQ.

(The symbol (AB] in (60) denotes the set of all points on the line AB excluding the end
point A but including the point B.) The points P and Q which are associated with zero
driving traction are sometimes referred to as “"Maxwell states™. They are given by

(A.A) = (A,,.A,) and (A,.A,)) (61)

where A,, and A,; were defined in (57); see also (58). Also, one finds that the driving
traction achieves its largest value f), at B (and also at E) and its smallest value f,, at C (and
also at F). These values are

Ju=—0,(Ey—L,)22 (>0) (62)
./l‘n = a'l'(z.\l '_'zm)//:)':z (<0) (63)

Finally, Fig. 3 shows an example of a kinetic function ¥ that might be used in the
kinetic law (51). It is consistent with the admissibility requirement (52). In the example
which will be discussed in Part II, we will see how in a specific problem, the kinetic relation,
together with an initiation criterion, can be used to resolve the non-uniqueness referred to
earlier. In that example we will find that the kinetic relation of Fig. 3 generally leads to
rate-dependent *‘viscoplasticity-like™ response. Two special cases which lead to reversible,
dissipation-free response and to rate-independent plasticity-like response will also be dis-
cussed there.

5.1. Some remarks on the kinetic law
In this sub-section we make some further observations on the kinetic relation. Consider

a deformed configuration of the body involving a shock S. Let x be a point on S and let &
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and & be the limiting values of the strain and stress tensors at x as x is approached from

the positive side of §; & and o are the corresponding quantities on the negative side. The
unit normal to S at x, which points into the positive side, is n.
Let 4 denote the set of all symmetric tensors & which are “kinematically compatible”

with &. z and n, i.e. tensors ¢ such that the pair of strain tensors ¢, & (or &, &) can be
associated with a piecewise homogeneous deformation which has continuous displacements
across the surface with normal n:

A={glg; = g,,&-(! /2a;m+a;n,) for an arbitrary vector a}. 64)

(Since & and ¢ are related by (25). the set 4 defined by (64) with & is identical to the set
corresponding to z.) Clearly, both z and & € 4. Since & and & obey (5), it is not difficult to
show that
o,lel —eP] = a,[e" -] foralle”, eV ed. (65)
Next, we defined a function G by

G(e) = W(e)—(1/2) (&ij + 5':‘;’ )&';‘ (66)

for ali tensors g in 4. [n order to study the extrema of G, it is easier to consider the function
G which is defined on the set of all recrors and is such that

G(a) = G(e) (67)

with & and a related by (64). Differentiating G with respect to g, yields

oG CW(e) . )
da, ~ ( G, 2)("'1'*%)) " (68)

which when differentiated once more gives

&G W)
== nn
da, da; Oe, 08y, Y

(69)

It now follows from (68), (5) and the constitutive relationships Er.-, = aw(e)/ Eij
o; = CW(e)/e,, thate = t and & = ¢ are both extrema of G, and from (69) and (15) that
they (locally) minimize G if strong ellipticity prevails at the appropriate strain & or .

Finally, on using (65), (66), (5). (38) and (39) we see that the difference between the
values of G on the two sides of § is precisely the driving tractionon Sat x:

f=G(¥)-G(e). (70)
In order to illustrate this, consider the straight line in strain space,

A-A, A-a

A-A

£; for—oww<A<o an

which connects the strains £ and 2. All tensors ¢ on this line belong to the set 4. Let G (A)
be the restriction of G{g) to this line. Then, Fig. 4 is a schematic diagram showing a graph
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Fig. 4. Schematic graph of the function &(A).

of &(A) versus A, in a case where strong ellipticity prevails at € and & (ie. at A = A and
A) so that they both correspond to minima of G. As the shock surface S moves through
the body, its normal velocity ¥, at x is a measure of the (volume) rate of change at which
material on the positive side is transferred to the negative side. The kinetic relation (S1) is
therefore a relationship between this rate and the jump in G.

The discussion so fur in this sub-section has not been specialized to the material (9).
In the case when the material is characterized by the strain energy function (9), one finds
by substituting (9) and (10) into (66), and simplifying using (71), (12). (1), (3), that

1t

[ A v
G(A) = j T(EHYAE-(1/DE(A)+Z(A)A+constant, —o0 <A < oo, (7

When the response function in dilatation is as depicted in Fig. |, it is easy to show that the
graph of G as given by (72), (53), has the general form shown in Fig. 4; when
X, < E(A) <Xy, & has precisely two local minima and one local maximum as in Fig. 4.
Morcover, in this case, G(A)—G(A) (and therefore the driving traction f) is equal to the
ditference in the Gibbs free energy [[W(e)—0o.£,]]1".

Diagrams of the form of Fig. 4 arc commonly encountered in metallurgical discussions
on the kinetics of phase transformations; see for example Porter and Easterling (1981).
The classicul example of a kinetic relation in this context is the Arhhenius law which, in the
notation of Fig. 4, is based on the assumption that the rate of transfgr of ma%erial from the
positive side of S to the negative side is governed by the quantity G(A*)—-G(A)(which is
the “‘height of the barrier™ in Fig. 4) and that the rate of trans‘l)'cr of mgterial from the
negative side of S to the positive side is governed by the quantity G(A,)— G (A). This leads
to an explicit kinetic law of the form V, = V{(/}. We refer to Fine (1964) (which is based
on Turnbull, 1956) for the details of such an argument.

6. CONCLUDING REMARKS

6.1. Driving force on a crack-tip

In this section we briefly comment on the driving force on a crack-tip when the crack
is contained in a body composed of the material (10). For simplicity, suppose that the body
is a slab containing a traction-free through-crack (Fig. 5) and that the loading is such that
the deformation is planar. Suppose further that the body is composed of the material (10)
with the constitutive function Z(¢) defined by (12) being non-monotone. By the analysis in
Section 3, deformations of this body can involve shocks. Suppose for definiteness that there
is a single (cylindrical) phase boundary S as shown in Fig. 4. C is the curve along which §
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rﬂ

Fig. 5. Geometry of cracked slab with phase boundary C and integration paths Iy, I ..

intersects the (x,, x;)-plane. The deformation is smooth at all points of the body inside C
(excluding points on the crack itself) as well as at all points outside C.

Let [y and T, be two closed curves as shown in Fig. 5 with I', being entirely within
C and I, entirely outside. The values of the J-integral associated with these two curves
are, respectively,

Jlip Ei P”,n” dS, .,‘) .=_§ P”‘n” ds (73)
o rl

where ds denotes arc length, n is the unit outward normal vector on the appropriate curve,
and P,, arc the components of the energy-momentum tensor:

P:ﬂ = W(S,,,—-O’.,,;H./,. (74)

(Greek subscripts take the values 1 and 2 only.)

The J-integral is path-independent provided the paths of integration do not insect the
shock curve C; this, together with the traction-free nature of the crack surface yields the
alternate expression

Jllp =§ I—)”,nl; dS (75)

C
where P,, are the limiting values of P, as a point on C is approached from within. Similarly

+

J'n = § Pmnﬁ dS. (76)

C

Combining (75) and (76) gives

Jlip = Jgo - ﬁ[[Pw]]t"ﬁ ds. (77)

Next, in view of (74), (1), displacement continuity (2), and traction continuity (5), one
sees that



1216 R. ABEYARATNE and G.-H. JIANG

[[Psllzngl, =0 onC (78)

where ¢ is a unit tangent vector on C. Thus the vector [[P,;]]: n, is normal to the curve C.,
and by (38)

([Pyl]Zny = fs on C; (79)

Sis the driving traction on the shock. Finally, combining (77} with (79) provides the desired
expression

Jip=J¢— Ef; fi, ds. (80)
C

Equation (78) states that the driving force Ji;, on the crack-tip equals the difference
between J, (the “applied value of /") and the resultant driving force on the shock. Thus
in general, J, # J,. (This was also noted by Silling. 1987.) In certain exceptional cases,
for example if the deformation is such that /= constant on C, the integral in (80) will vanish
and then J,, = J,.. The value of the shock driving traction f depends on (and is determined
by) the particular kinetic relation governing the evolution of the shock. If the resultant
driving force on the shock is in the positive x,-direction then, by (80), Jy, < /...

6.2. Anti-plane deformations and the constitutive law

Consider a right-cylindrical body whose middle cross-section P lies in the (x,, x.)-
plane, and suppose that a purely axial displacement field f (x|, x,) is prescribed on the lateral
surface of the body:

u;=u;=0, Uy "—-"f(xhx.)) on ¢D. (8])

Assume, for the moment, that the cylinder is composed of a homogeneous, isotropic elastic
material characterized by a strain energy function W(k, A) which is not necessarily of the
particular form (9).

In order to examine whether this body can respond to the loading (81) in an anti-planc
manncr, we assume that it does and take

Uy =u, =0, uy=u(x,,x.) onD (82)

with ¥ = f on dD. From (1) and (3), we find that the shear and dilatational invariants
associated with the displacement field (82) are

k=|Vu|, A=0 onD. (83)
By (7). the corresponding stress components are

0y =03 =03 =¢W(k0)/0A, 6,,=0
on D (84)

g3 = (1, k) OW(k, 0}/ ok, gy = (u,/k) OW(k.0)/ ok

with k given by (83). Substituting (84) into the equilibrium equations feads to the following
three equations involving the single displacement component u:
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W k.0)/0A = 0. (W (k.0)/6A] = 0
£x, Cx,

- -

_:c._ [(1e\/ k) EW(k,0)/ k] + ¢

cXxX, C:x:

onD (85)

[(u2/k) EW(k,0)/2k] = 0

with & = |Vu|. In general. this is an over-determined system of equations and therefore has
no solution.t Consequently, we conclude that despite the purely axial nature of the prescribed
boundury displacement (81). the displacement field within the body cannot (generally) be of
the anti-plane form (82). In particular, the in-plane displacement components w, and u, will
not generally vanish. and neither will the dilatation.

If it so happens that the strain energy function W has the particular (separable) form
{8) or (9). then the first two equations in (85) are satisfied automatically and so the problem
is then not over-determined. Therefore, in this special case, the body can deform in an anti-
plane manner.

These observations may be of some relevance in the modeling of transforming ceramic
composites. If a cylindrical body composed of such a material was loaded by a purely axial
displacement (81), the sccond phase particles in the composite would undergo a martensitic
transformation when the applied displacement became sufficiently large. Since this trans-
formation involves some dilatation (which in fact is of primary interest in this setting) it
follows that the displacement ficld within the body will not be of the anti-plane form (82).
This in turn suggests that the strain energy function Wk, A) characterizing such materials
might not have the separable form (8) or (9), but rather that the shear and dilatational
dependency in W would be coupled.

6.3. Intersection of a shock with a traction-free surface
Consider a shock surface S which intersects the boundary 2D of the body. Let x be a

point common to § and ¢ D, and suppose that the shock strength A — A does not vanish at
x. Let modenote the unit outward normal to ¢D at x and let n be the (limiting) unit normal
to S at x. Then, from {(47) and (48) we have

By = &+ (A—B)nn, (86)
while (26) und (28) give
by =2t +{E(A)=2uh)5,, &, = 2uE,+{Z(A)-2uA}s,. 87)
Subtracting the second of (87) from the first, and using (86), leads to
5y = 6,4+ 2u(B—B) (n,m— 5;) (88)
and so
om = 5m+2y(5—5)((n-m)n-—m). (89)

Suppose first that the boundary 2D is traction-free at x : am = gm = 0. Then (89) with
A#A requires that

+ Knowles (19774, 1977b) has obtained a complete characterization of the class of materials which can sustain
anti-plane shear deformations in the finite theory of elasticity.

SAS 75:10-%
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(nmin=m (90)

which implies that m = +n. Thus, the shock surface S must be rangential to the boundary
¢D at x.
Suppose next that the boundary éD is free of shear traction at x. Then by (89),

{(n-m){(n-¢£) =0 f{orall vectors £ normal to m. 91)

Thus in this case, either m = +n or m is normal to a and so the shock surface § is either
tangential or normal to D at x. (Note that Fig. 5 is consistent with these properties: C
intersects the traction-free crack tangentially and the shear traction-free line ahead of the
crack normally.)
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